

ISWKP2/041/1

INDIAN SCHOOL AL WADI AL KABIR

Second Rehearsal Examination (2024-25)

Sub: MATHEMATICS STANDARD (041)

Date: 16-01-2025

Class: X

80

Set 1 Marking Scheme

Maximum marks:

Time: 3 hours

SECTION A

This section comprises multiple choice questions (MCQs) of 1 mark each.					
Q.1.	(C) (O	Q.11.	(A) 30°		
Q.2.	(A) all real values except 10	Q.12.	(C) $\frac{4}{8}$		
Q.3.	(D) $\frac{1}{26}$	Q.13.	(A) $a = -1$, $b = 2$		
Q.4.	(A) 3024	Q.14.	(B) 10		
Q.5.	(D) -1	Q.15.	(B) -12, 18		
Q.6.	(B) 27 cm	Q.16.	(B) 20: 27		
Q.7.	(D) 60°	Q.17.	(C) 2		
Q.8.	(B) 2 units	Q.18.	(B) 4		
Q.9.	(B) $\frac{7}{0.01}$	Q.19.	(a) Both (A) and (R) are true and (R) is the correct explanation of (A)		
Q.10.	$\text{(C)} \frac{50\sqrt{2}}{\pi} \text{ cm}$	Q.20.	(b)Both (A) and (R) are true and (R) is not the correct explanation of (A)		

SECTION B

This section comprises very short answer (VSA) type questions of 2 marks each

Q.21.	(a)	
	$\frac{2 \times \frac{1}{\sqrt{3}} \times 2 \times 1}{1 - \frac{3}{4}}$	1½
	$=\frac{16}{\sqrt{3}}$ or $\frac{16\sqrt{3}}{3}$	1/2
	OR	
	$\cos A + \cos^2 A = 1 \Rightarrow \cos A = 1 - \cos^2 A = \sin^2 A$	1
	$\therefore \sin^2 A + \sin^4 A = \cos A + \cos^2 A \ (\because \sin^2 A = \cos A)$ $= 1$	1
Q.22.	$15^{n} = 5^{n} \times 3^{n}$	1
	A number ends with zero if it has two prime factors 2 and 5 both. Since 15 ⁿ does not have 2 as a prime factor, so it can't end with zero	1
Q.23.	Join OA and OC	1/z
	OA = OC	,
	∠OAC = ∠OCA	1/z
	Also, ∠OAB = ∠OCD	
	$\Rightarrow \angle OAC + \angle OAB = \angle OCA + \angle OCD$	1/2
	$\Rightarrow \angle BAC = \angle DCA$	1/2
Q.24	Ans: In $\triangle PRQ$ and $\triangle STQ$ $\angle Q = \angle Q \text{ (common)}$ $\angle R = \angle T \text{ (each 90°)}$ $\therefore \triangle PRQ \sim DSTQ \text{ (SS similarity corollary)}$ $\Rightarrow \frac{QR}{QT} = \frac{QP}{QS} \Rightarrow QR \times QS = QP \times QT$	1/2 1/2 1/2 1/2 1/2
Q.25 a)		
	Area of the shaded region = area of square – area of sector $\frac{1}{2}$	1
	$= (10)^2 - \frac{90}{360}\pi(5)^2$ 3.14×25	
	$= 100 - \frac{3.14 \times 25}{4}$ $= 80.38 \ sq.cm$ 1/2	1
	OR	-

Q.25 b)	Angle subtended by minute hand in 20 minutes = $\frac{360^{\circ}}{60} \times 20 = 120^{\circ}$	1/2						
Q.20 5)	r = 14	/2						
	Area = $\frac{22}{7} \times 14 \times 14 \times \frac{120}{360}$	1						
		1/2						
	$= \frac{616}{3} \text{ or } 205.33$	72						
	∴ required area is $\frac{616}{3}$ cm ² or 205.33 cm ²							
	SECTION C							
	This section comprises of short answer (SA) type questions of 3 marks each.							
Q.26 a)	$217 \times + 131 \text{ y} = 913$ Adding 348 (x + y) = 1740							
,	$131 \times + 217 \text{ y} = 827$							
	x + y = 5 Subtracting 86 (x, y) = 86							
	Subtracting, 86 $(x - y) = 86$ x - y = 1	1						
	\Rightarrow x = 3, y = 2							
	OR	1 ½ + ½						
Q.26 b)		72 + 72						
Q.20 D)	Let present age of Rashmi and Nazma be x years and y years respectively.							
	Therefore, $x - 3 = 3 (y - 3)$	1						
	or $x - 3y + 6 = 0$							
	and $x + 10 = 2 (y + 10)$	1						
	or $x - 2y - 10 = 0$							
	Solving equations to get $x = 42$, $y = 16$	1						
	∴ Present age of Rashmi is 42 years and that of Nazma is 16 years.							
	2 - 1 - 2 - 2 - 1 - 1 - 2 - 2 - 2 - 2 -							
Q.27.	Assuming $\frac{5-\sqrt{2}}{3}$ to be a rational number.	1/						
Q.27.		1/2						
	$\Rightarrow \frac{1}{3} = \frac{1}{q}$, where p and q are integers & $q \neq 0$	1/2						
	$\Rightarrow \frac{5 - \sqrt{2}}{3} = \frac{p}{q}, \text{ where p and q are integers } \& q \neq 0$ $\Rightarrow \sqrt{2} = \frac{5q - 3p}{q}$	1						
	Here RHS is rational but LHS is irrational.	1						
	Therefore our assumption is wrong.	1/2						
	moretore our assumption is wrong.	1/2						

Q.28.	$L.H.S = \frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1}$						
	Divide Numerator and Denominator by $\cos \theta$.						
	$= \frac{\tan \theta - 1 + \sec \theta}{\tan \theta + 1 - \sec \theta}$	1					
	$= \frac{\tan \theta - 1 + \sec \theta}{(\tan \theta - \sec \theta) + (\sec^2 \theta - \tan^2 \theta)}$	1					
	$= \frac{\tan \theta - 1 + \sec \theta}{(\sec \theta - \tan \theta) (\tan \theta + \sec \theta - 1)}$	⅓					
	$= \frac{1}{\sec \theta - \tan \theta} = \text{R.H.S}$	1/2					
Q.29 a)	TP = TQ						
,	$\Rightarrow \angle TPQ = \angle TQP$						
	Let \angle PTQ be θ						
	$\Rightarrow \angle \text{TPQ} = \angle \text{TQP} = \frac{180^{\circ} - \theta}{2} = 90^{\circ} - \frac{\theta}{2}$						
	Now $\angle OPT = 90^{\circ}$						
	$\Rightarrow \angle OPQ = 90^{\circ} - (90^{\circ} - \frac{\theta}{2}) = \frac{\theta}{2}$						
	$\angle PTQ = 2 \angle OPQ$						
	OR						
b)	Given: A quadrilateral ABCD circumscribes a circle with centre O						
6)	S 2 1 8 P B						

		$\frac{1}{2}$ for fig.			
	To Prove: \angle AOB + \angle COD = 180° and \angle BOC + \angle AOD = 180° Proof: In \triangle AOP and \triangle AOS OA = OA (common) OP = OS (radii) AP = AS (tangents from an external point) \triangle AOP \cong \triangle AOS (SSS criteria) \triangle \angle 1 = \angle 2	$\frac{1}{\frac{1}{2}}$			
	Iy, $\angle 3 = \angle 4$, $\angle 5 = \angle 6$ and $\angle 7 = \angle 8$ Now $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$ $\Rightarrow 2(\angle 1 + \angle 4 + \angle 5 + \angle 8) = 360^{\circ}$ $\Rightarrow (\angle 1 + \angle 8) + (\angle 4 + \angle 5) = 180^{\circ}$ $\Rightarrow \angle AOB + \angle COD = 180^{\circ}$ Iy, $\angle BOC + \angle AOD = 180^{\circ}$	$\frac{1}{2}$ $\frac{1}{2}$			
Q.30.	Modal class is $50 - 60$, $\ell = 50$, $f_1 = 16$, $f_0 = 10$, $f_2 = x$, $\ell = 10$		1/2		
	$Mode = \ell + \left(\frac{f_1 - f_0}{2f_0 - f_0 - f_0}\right) \times \hbar$				
	$57.5 = 50 + \left(\frac{16 - 10}{33 - 10 - x}\right) \times 10$		1/2		
	$7.5 = \left(\frac{6}{22 - r}\right) \times 10$		1/2		
	$7.5 = \frac{60}{22 - x}; 165 - 7.5x = 60$ $7.5x = 105; x = \frac{105}{7.5} = 14$		½ ½		
Q.31.	7.5 $2t^2 - 9t - 45 = 2t^2 - 15t + 6t - 45$				
4.0	$= (2t - 15) (t + 3)$ ∴ zeroes of the polynomial are $\frac{15}{2}$ and -3 . Sum of the zeroes = $\frac{15}{2}$ + (-3) = $\frac{9}{2}$ = $\frac{-(\text{coefficient of t})}{\text{coefficient of t}^2}$ Product of the zeroes = $\frac{15}{2}$ × (-3) = $-\frac{45}{2}$ = $\frac{\text{constant term}}{\text{coefficient of t}^2}$		1 1 ½ ½		
	(Use variable x in place of t)		,-		
SECTION D					
	This section comprises long answer (LA) type questions of 5 mar	ks each.			
Q.32.	(i) Given, to prove, fig, consruction	(1 ½)		
	Proof	(1 1/2)		

0.24	T						
Q.34.	Class	Xi	$\mathbf{f_i}$	$\mathbf{u}_{i} = \frac{x_{i} - 67 \cdot 5}{5} - 3$	f _i u _i	cf	
	50 – 55	52.5	2	-3	-6	2	
	55 – 60	57.5	8	-2	- 16	10	
	60 - 65	62.5	12	-1	-12	22	2
	65 – 70	67·5 = a	24	0	0	46	for correct
	70 – 75	72.5	38	1	38	84	table
	75 – 80	77-5	16	2	32	100	
			100		36		
		Mean = a	$a + \frac{\sum f_{\ell}u_{\ell}}{\sum f_{\ell}} \times$	< h			
		=	$67.5 + (\frac{36}{10})$	$\frac{6}{00} \times 5) = 69.3$			$1 + \frac{1}{2}$
	$Median = I + \frac{\frac{N}{2} - cf}{f} \times h$ $50 - 46 = -c = 0$, , 1	
	$= 70 + \frac{50 - 46}{38} \times 5 = 70.5$					$1 + \frac{1}{2}$	
Q.35.	(a)						
	Here $a_1 = -4$,	$a_n = 29$ an	$d S_n = 150$				1
	Now $29 = -4 + (n - 1)d = (n - 1)d = 33$					1 1/2	
	Also $S_n = 150 = \frac{n}{2}(-4 + 29) \implies n = 12$				1 ½		
	From (i), d = 3				1/2		
	Hence common difference = 3						
	OR						
	(b)						

Given
$$\frac{a+10d}{a+16d} = \frac{3}{4}$$

$$\Rightarrow$$
 4a + 40d = 3a + 48d

$$\Rightarrow$$
 a = 8d (i)

1

therefore
$$\frac{a_5}{a_{21}} = \frac{a + 4d}{a + 20d} = \frac{3}{7}$$
 using(i)

$$a_5: a_{21} = 3:7$$

$$\frac{s_5}{s_{21}} = \frac{\frac{5}{2}(2a + 4d)}{\frac{21}{2}(2a + 20d)} = \frac{5 \times 20d}{21 \times 36d} = \frac{25}{189}$$

Therefore, $S_5:S_{21}=25:189$

SECTION E

This section comprises 3 case study- based questions of 4 marks each.

Case Study- 1

Let AB and CD be the 2 poles and M be a point somewhere between their bases in the same line.

$$\tan 60^0 = \frac{h}{x} \Rightarrow h = x\sqrt{3}$$

(ii a)
$$\tan 30^0 = \frac{h}{28 - x} \Rightarrow h = \frac{(28 - x)}{\sqrt{3}}$$
 $\frac{1}{2}$

$$\therefore h = 7\sqrt{3} \ m$$

Q.36.

(ii) BM = p and DM = q

$$\sin 60^{0} = \frac{h}{p} \Rightarrow h = \frac{p\sqrt{3}}{2}$$
¹/₂

$$\sin 30^0 = \frac{h}{q} \Rightarrow h = \frac{q}{2}$$

$$\therefore \frac{p\sqrt{3}}{2} = \frac{q}{2} \Rightarrow q = \sqrt{3}p$$

(iii)
$$\tan 60^{0} = \frac{7\sqrt{3}}{x} \Rightarrow x = 7m = AM$$

$$MC = 28 - x = 21 m$$
¹/₂

Q.37. Case Study- 2

- 1. The coordinates of Alia's house and Shagun's house are A (2, 3) and B (2, 1) respectively.
- :. Distance of Alia's house from Shagun's house is,

BA =
$$\sqrt{(2-2)^2 + (3-1)^2} = \sqrt{(0)^2 + (2)^2}$$

= $\sqrt{0+4} = 2$ units.

2. The coordinates of Shagun's house and library are B (2, 1) and (4, 1) respectively.

Distance of library from Shagun's house is,

BC =
$$\sqrt{(4-2)^2 + (1-1)^2}$$

= $\sqrt{(2)^2 + (0)^2} = \sqrt{4+0} = 2$ units.

3. The coordinates of school, Alia's house, Shagun's house and library are 0(0, 0), A (2, 3), B (2, 1) and C (4,1)

Now, BA =
$$\sqrt{(2-2)^2 + (3-1)^2} = \sqrt{(0)^2 + (2)^2}$$

= $\sqrt{0+4} = 2$ units.
BC = $\sqrt{(4-2)^2 + (1-1)^2} = \sqrt{(2)^2 + (0)^2}$
= $\sqrt{4+0} = 2$ units.
and BO = $\sqrt{(0-2)^2 + (0-1)^2} = \sqrt{(-2)^2 + (-1)^2}$
= $\sqrt{4+1} = \sqrt{5}$ units.

Here, BO is greater than BA and BC.

For Shagun, School (0) is father than Alia's house (A)

and library (C). Hence proved.

Q.38.	Case Study – 3					
	(i) $(18 + x) (12 + x) = 2(18 \times 12)$ (ii) $x^2 + 30x - 216 = 0$	1				
	(iii) Solving: $x^2 + 30x - 216 = 0$ $\Rightarrow (x + 36) (x - 6) = 0$					
	$x \neq -36 : \Rightarrow x = 6.$ new dimensions are 24 cm × 18 cm	1				
	OR (iii) If $(18 + x) (12 + x) = 220$ then $x^2 + 30x - 4 = 0$					
	Here $D = 900 + 16 = 916$ which is not a perfect square.	1				
	Thus we can't have any such rational value of x.	1				
